Optical properties of measurement cell material (BC-800)

Byung Kyu Park¹ and Dima Budker

¹byungkyu.park@berkeley.edu

Department of Physics University of California, Berkeley

nEDM Collaboration Meeting May 21, 2008

The sample

A sample of BC-800 (UVT PMMA) from Saint-Gobain:

Overall characteristic of sample

- Physical dimensions: $3.5'' \times 3.5'' \times 0.375''$
- Birefringence uniformity: uniform to a few percent over $1'' \times 0.5''$ area in the center

birefringence induced by internal stress over 1" x 0.5" area

Transmission at 250 nm - 850 nm

- Result agrees with BC-800 spec and, at visible region, what is expected from the n = 1.49
- ... the fluctuation is probably spectrometer noise

Photoelastic coefficient measurement

Photoelastic coefficient measurement

• Photoelastic coefficient¹, $C = 6.2 \times 10^{-13} \text{ cm}^2/\text{dyn}$, agrees with values found in literature for PMMA

^{1...} defined as $\Delta n = C\sigma$, where σ is stress and Δn is change in birefringence due to stress

"Intrinsic" birefringence

• Along the short dimension, ellipticity of about 6° is induced, corresponding to $\Delta n = 2.9 \times 10^{-6}$

"Intrinsic" birefringence

• Probing along the long dimension, birefringence larger by an order of magnitude is detected ($\Delta n = 2.4 \times 10^{-5}$)

"Intrinsic" birefringence, at low temperature

- Measurements done at temperatures down to 1.5 K
- Data is currently being analyzed, by modeling the effect of large (> 20° in induced ellipticity) window birefringence

Annealing

- The sample of BC-800 is annealed by putting it in an oven preheated to 120° (softening point², 96°, melting point³ > 140°), baking for 4 hours, and cooling it slowly over 12 hours
- Overall birefringence is reduced,

²according to BC-800 spec

³according to http://en.wikipedia.org/wiki/PMMA 🚁 🔻

Annealing

along the short dimension ($\Delta n < 1.7 \times 10^{-7}$) ...

induced ellipticity vs. inverse of wavelength, propagating along short dimension

Annealing

... and along the long dimension ($\Delta n = 3.1 \times 10^{-6}$)

induced ellipticity vs. inverse of wavelength, propagating along long dimension

Annealing: uniformity

- But the uniformity is significantly affected, both along the short and long dimensions
- And the physical dimensions change signifcantly:

thickness: 0.375" → 0.387"

height: 1.08" → 1.06"

To-Do

- Tests at cryogenic temperatures (down to 1.5 K in our cryostat), with and without annealing
- Annealing with different parameters
- Measurement of Kerr constant of BC-800 at LN₂ and LHe temperatures
- Kerr HV monitor implementation design based on parameters measured

To-Do

